
NOVEL PROOFS AND ALGORITHMS FOR RANGE SEARCHABLE
ENCRYPTION

Richard Ong Jun Quan1, Guan Keer2, Claire-Leia Ng Shean Ee3, Ruth Ng Ii-Yung4, and John Khoo Teng Fong4

1 NUS High School of Mathematics and Science, 20 Clementi Ave 1, Singapore 129957
2 Hwa Chong Institution, 661 Bukit Timah Rd, Singapore 269734

3 Raffles Girls’ School, 2 Braddell Rise, Singapore 318871
4 DSO National Laboratories, 12 Science Park Drive, Singapore 118225

Abstract. Range Searchable Encryption (RSE) is a cryptographic scheme with applica-
tions in cloud storage. It allows users to request a range of data on an untrusted server
without leaking sensitive information. Many current RSE schemes make use of a binary
tree structure to achieve range search and a cover algorithm to convert a range query to
a small set of tokens.

In our paper, we present novel contributions in three areas. Firstly, we prove the security
of our novel RSEΩ scheme through binding it to the security of its underlying primitive
Multi-Map Encryption (MME). Secondly, we formalize a widely used result from the
security proof of the MMEπ scheme, addressing issues with prior proofs that relied
on nonstandard assumptions and were difficult to extend. These proofs combine to
show that our RSEΩ scheme is secure. Lastly, we present a novel optimal c-cover
algorithm, which is used in range queries, that is generic, efficient and secure where
previous algorithms have been limited. We also prove its correctness and show its
efficiency improvements. Collectively, these contributions advance the state of RSE and
its practical applications.

1 Introduction
Motivation Recent advancements in cloud computing technologies have made it increasingly
common for individuals and organisations to outsource their data to cloud services. The use of cloud
computing enables users to access their outsourced data conveniently over the internet and scale up
services flexibly. Given that the outsourced data could be of a sensitive nature, there is a growing
demand for cryptographic schemes that preserve user privacy without it coming at the expense of
practical efficiency.

Range Searchable Encryption (RSE) [3, 4] addresses this need by enabling range queries on
encrypted databases without revealing information about documents stored and ranges searched.
For instance, a hospital using a cloud service such as Google Cloud should use a RSE scheme to
search through confidential patient records by patient age.
Background Many current RSE schemes [3, 4, 5, 9, 6] comprise of 2 parts: a cover algorithm
which reduces range queries to a small set of tokens and an encrypted binary tree structure used
to obtain relevant documents built with a Multimap Encryption Scheme (MME) [2, 7]. Most RSE
schemes support cover algorithms which determine the query and results bandwidth, as well as the
security and efficiency of the scheme overall.

In this work, we use the Provable Security Framework [1] to quantify the security of crypto-
graphic schemes. In contrast to Practical Security wherein the security of a scheme is shown by
testing it against all cryptanalysis techniques, Provable Security aims to mathematically prove the
security of a scheme given a security condition. Provable Security allows for the security of a new

2 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

complex scheme to be broken down into the security of the sum of its underlying components which
can be well-tested secure schemes like AES-CTR and HMAC-SHA-256.
1.1 Our Contributions

1. We introduce a novel RSE scheme RSEΩ which is built upon the MME scheme and present
security proofs relating the security of our RSEΩ scheme to the MME scheme. In comparison
to our previous scheme R-RSE [8], RSEΩ provides security guarantees and more efficient search
times.

2. We present a novel proof for a result bounding the security of MMEπ [7], a type of MME
scheme which supports encrypted keyword search, to the underlying Symmetric Encryption
(SE) and Function Family (FF) schemes used to construct it. This result has been used in other
works to prove the security of other schemes but has yet to been formalised. We also use this
result to provide security guarantees for our RSEΩ scheme.

3. We present a novel optimal (proven to be correct) cover algorithm that is generic, efficient
and compatible with several state-of-the-art RSE schemes. Previous works [3, 4, 5] have only
designed optimal cover algorithms limited to cover sizes (c = 1, 3) or generic ones with
unacceptable runtime complexities [8]. We also provide a proof of optimality.

1.2 Related Work

In our previous work [8], we designed and implemented a novel optimal cover algorithm (DP-cover)
using a dynamic programming approach. DP-cover was significantly faster than brute force and
mathematically proven to minimise overhead. We also presented a novel RSE scheme, Ratcheting
RSE (R-RSE) which improved upon previous schemes by reducing server-side storage. Demertzis
et al. were the first to design RSE schemes [3, 4] and prove their security. Their Log and Constant
schemes represent data in a binary tree structure and are used in conjunction with Single Range
Cover (SRC), Best Range Cover (BRC) and Universal Range Cover (URC) cover algorithms. This
is detailed in Table 1.

Cover Algorithm Query Size Query Time Overhead Generic
SRC O(1) O() O(n) ✗

BRC O(logR) - - ✗

URC O(logR) - - ✗

DP-cover O(c) O(Rc) O(R) ✓

c-cover (Ours) O(c) O(c2) O(R) ✓

Table 1: Comparison of existing cover algorithms to our novel c-cover algorithm
R: Range query size, n: dataset size, c: cover size (only applicable for c-cover)
Query Size: size of query sent to server, Query Time: time taken to compute query, Overhead: additional bandwidth beyond requested
range

However, BRC and URC are not generic to any cover size while our c-cover algorithm is. Although
SRC achieves a constant query size, it is at the expense of high overhead, which could be the size of
the whole database in the worst case. DP-cover is the most similar to our novel c-cover algorithm as
they are both generic and allow for constant query sizes with acceptable overhead. Nonetheless, our
c-cover algorithm offers a signifcantly lower runtime complexity which will make using covers on
large ranges efficient practically. In practice, this means that for a range of 200000 and a cover size
of 5, our novel algorithm runs around 800000000 times faster.

MMEπ is often used as an underlying MME scheme to other more complex schemes in the
literature. MMEπ is also widely in real-world implementations such as in MongoDB, a popular

Title Suppressed Due to Excessive Length 3

database management system. Although a security proof exists [2], it is considered inadequate due
to its non-standard assumptions and its lack of extensibility for further security analysis. MMEπ is
also widely used in real implementations like mongo db and libraries. Its security result is used to
justify the security of schemes built upon it. However, this result has yet to be formalized in any
work.

2 Preliminaries

In this paper, () denotes empty sequences, n denotes a positive integer, ← assigns the output
of a function or algorithm to a variable and ←$ algorithm indicates that the algorithm is non-
deterministic while ←$ {...} represents a variable being picked uniformly from random from a set.
{0, 1}n denotes the set of all bitstrings (e.g. 111001100010) of length n.
Table mappings Mappings are captured by lookup tables of the form T. These map labels l ∈
{0, 1}∗ to values T[l] ∈ {0, 1}∗ ∪ ⊥.
Multimap data structure The multimap data type MMdt is a lookup table that maps all labels of
a fixed bitlength MMdt.lLen to sequences of values of fixed bitlength MMdt.vLenn, and all other
labels to (). |MMdt| =

∑k
i=1(#(MMdt[i])), the number of values in MMdt.

Symmetric Encryption Symmetric Encryption SE schemes like AES-CTR comprise of a set of
encryption and decryption algorithms which encrypt arbitrary length messages (plaintext) and
decrypt encrypted messages (ciphertext). It is defined in Appendix A.1
Function Families Function Families F schemes, also known as keyed cryptographic hash functions,
have a deterministic evaluation algorithm that converts arbitrary length data (message) into a fixed-
size string of characters (a hash) given a cryptographic key (key) and is defined in Appendix A.2.
An example would be HMAC-SHA-256
Multimap Encryption Multimap Encryption MME schemes encrypt a MMdt with its structure
preserved to form the Encrypted Data Structure (EDS) lookup table. The EDS is placed on a remote
server so clients only have to send an encrypted token of a label for the server to use to search for
their corresponding encrypted values which can then be decrypted. MME enables keyword search
to be outsourced to untrusted servers by preserving privacy of the database and searches. The full
definition of is found in Appendix A.3.
Range Searchable Encryption Range Searchable Encryption RSE schemes encrypt a database
where every document is associated with an integer index to generate an EDS. Given a numerical
range (a,b) with a and b included, RSE converts it to tokens which is used as an input to a search
function that returns the correct documents within the range. Like MME, RSE allows for range
search (eg. Age, Time, Date) to be privately outsourced to remote servers. The full definition of
RSE is found in Appendix A.4.

3 RSEΩ

RSEΩ is an example of a RSE scheme. Figure 1 is an illustrative example of RSEΩ’s functionality
and how RSEΩ uses MMEπ. Both are examples of RSE and MME schemes respectively. Full details
of RSEΩ and MMEπ algorithms can be found in Appendix B.

In the example, we have a RSE database DB with medical documents of young children, which
are represented by their names, stored with labels of their age. For example, “Bob” has the label
of 1. This can be represented in a binary tree. The bottommost nodes store the medical documents
while nodes further up in the tree map to those nodes. For example, the node (1,1) would map to

4 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

Fig. 1: Example of RSEΩ being used with MMEπ as its MME scheme in a hospital setting

(0,2) and (0,3) which store “Ava” and “Max”. This mapping between nodes is encapsulated when
converting the binary tree into a multimap M.

M is then encrypted using MMEπ.Setup to produce an encrypted document structure EDS. For
each label in M, the label is tokenised by using a F scheme and a key (F.Ev(cryptographic key, label)→
token). For each value in M associated to that label, subtokens are generated using the F scheme
with the token used as the key and the index of the value being the message(F.Ev(token, value index)→
subtoken). Combined, it takes the form of F.Ev(F.Ev(key, label), value index)→ subtoken. Then,
values are encrypted (SE.Enc(cryptographic key, value)→ encrypted value). Finally, subtokens
map to an encrypted value in EDS.

To query the encrypted database, a range of ages such as ages between 0 and 1 can be chosen.
This is converted to a smaller set of nodes by a cover algorithm. Then, they are converted to tokens
and used to generate subtokens. Using these subtokens, the server will return the correct encrypted
documents from EDS. In this case, the token F.Ev(key, (1, 0)) returns the encrypted document for
Bob, which can then be decrypted to give the medical documents for Bob.

Notice that a server would only have access to the EDS and tokens sent. Hence this scheme
ensures that the data in the database and any ranges searched remain confidential.

4 Provable Security

4.1 Security Games

Security games are a construction used to compare a cryptographic scheme to its idealised version.
This idealised version has some security property that the real scheme tries to achieve. If they “look”
the same, it can be said that the cryptographic scheme achieves the desired security properties.

Title Suppressed Due to Excessive Length 5

The example below is a game with the security property of “Indistinguishability from random
strings” (IND-$) which is a concept applied to symmetrical encryption SE schemes. It means that
an ideal SE scheme should encrypt a plaintext such that its ciphertext is indistinguishable from a
randomly generated string given the secrecy of a randomly generated key.

Game Gind
SE (A)

KSE←$ SE.KS
b←$ {0, 1}
b′ ← AEnc

Return b = b′

Oracle Enc(M)

c1←$ SE.Enc(KSE,M)
c0←$ {0, 1}SE.cl(|M|)

Return cb

The game first randomizes the key (KSE) and bit (b). An Adversary A is now given an oracle.
Adversaries can be thought of as attackers of real schemes and them playing games is a way of
modeling attackers interacting with real schemes. Oracle acts like a black box which Adversary
A can input individual messages into and expect certain outputs. The oracle will always perform
SE.Enc when b = 1 or generate a random string if b = 0. The adversary can call on the oracle as
many times as it needs before it makes a guess on the value of b. We say the adversary wins if it can
guess the value of b correctly and that the advantage of adversary A playing the ind game against a
specific SE scheme is AdvindSE (A).

A static game is a game with no oracle. The adversary only has one chance to run the real or
ideal scheme before making a guess. A more detailed explanation of this is found in D.1.

Another game, played on F, describes an ideal F as being indistinguishable from a random
function, hence their pseudo-random function game, Gprf

F . We define this in D.2.

4.2 Quantifying Advantage

To demonstrate this concept, we refer again to the dynamic IND-$ game defined in the earlier
section. We let Pr[win] be the probability that the game returns True. This happens when b = b′,
meaning that the adversary correctly guessed the bit. We define:

AdvindSE (A) = Pr[win]− Pr[lose]

= Pr[b′ = b]− Pr[b′ ̸= b]

= Pr[b = 1](Pr[b′ = 1|b = 1]− Pr[b′ = 0|b = 1]) + Pr[b = 0](Pr[b′ = 0|b = 0]− Pr[b′ = 1|b = 0])

= 1/2(Pr[b′ = 1|b = 1] + Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]− Pr[b′ = 1|b = 0])

= 1/2(Pr[b′ = 1|b = 1] + (1− Pr[b′ = 1|b = 0])− (1− Pr[b′ = 1|b = 1])− Pr[b′ = 1|b = 0])

= Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

Notice that the advantage is formulated this way to negate the 50% probability that the adversary can
win by randomly guessing (if the adversary randomly guesses, Pr[win] = 0.5 and AdvindSE (A) = 0),
and ensures that the advantage remains between 0 and 1.

5 Semantic Security

As mentioned earlier, the core of semantic security involves identifying leakage, which is the
information about the data revealed to an outsider, and using it to simulate the scheme. This is
done through generating the leakage profile of the scheme. Leakage profiles in terms of structured
encryption, which MME and RSE fall under, include access-pattern (which query corresponds

6 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

to which data), volume leakage (the number of documents returned by each query and the total
number in the database), and query equality pattern (which queries are repeat queries).

While this information is about the data, it is permitted since it offers no real insight into the
contents of the database. A simulator simulates how the scheme would act ideally given the details
in the leakage profile. Semantic Security games are played by identifying permissible leakage, and
showing that given an randomly generated “ideal” database and queries with the same leakage
profile, an attacker has no significant advantage in distinguishing it from a real database.
Simulator and Leakage Functions We define and explain the leakage function (LMMEπ)and sim-
ulator SMMEπ for MMEπ in Appendix D.3. In Appendix D.4, we define the leakage function and
simulator for RSEΩ, which can be built from any generic LMME and SMME respectively, Lπ and Sπ
being one such example.
Leakage Games In Appendix D.5, we give games for generic MME and RSE, each with one
example of a simulator and leakage functions that have been defined in the previous sections. The
leakage functions and simulator are used to model how the scheme should work ideally when the
bit b is 0 and real scheme is run normally when b is 1. Adversaries would then try to guess the value
of b.

6 Security Proofs
6.1 MMEπ Security

Theorem 1 : Given MMEπ, Lπ and Sπ as defined and an adversary A, there exists adversaries B,
C and D such that:

AdvssMME,Lπ ,Sπ
(A) ≤ AdvindSE (B) + AdvprfF (C) + (m− x) · AdvprfF (D)

where m is the number of labels in M and x = |{l1, ..., ln}| is the number of distinct labels sent by
adversary A.

The full proof can be found in the D.6. Below outlines a proof sketch.
Proof Sketch : The goal of our proof is to bound the security of MMEπ to SE and F which have
examples of secure schemes (AES-CTR, HMAC-SHA-256). We do this by constructing adversaries
B, C and D that can use any given adversary A. In a sense, these adversaries try to play games
on each individual cryptographic component of the larger MMEπ scheme (SE and F functions).
They do so by modifying parts of the MME oracle and then passing the outputs on to Adversary A.
This tests the ability of A on distinguish between real and ideal versions of each component hence
reducing the security of MMEπ into the security of its parts.

However, since the strategy they employ (using A to make guesses for them) is rudimentary, it
may be possible for them to have higher chances of winning using other strategies which gives rise
to the inequality.

6.2 Practical Implication of Theorem 1

Corollary 1 : The implication is that the strongest possible adversary A can only ever have as much
advantage as the sum of the advantages of the strongest adversaries B, C and D. The contrapositive
implies that if we have secure underlying cryptographic parts, the sum of the advantages of B, C
and D would be low (which has shown to be the case for AES-CTR and HMAC-SHA-256) and
hence the advantage of A would be likewise low. This means the MMEπ scheme is secure. MMEπ

is also a scheme used in many other applications and by real companies, hence a formalised proof
of security is very important.

Title Suppressed Due to Excessive Length 7

6.3 RSEΩ Security

Theorem : Given RSEΩ, LΩ and SΩ as defined, and an adversary A, there exists an adversary B
such that:

AdvssRSEΩ ,LΩ ,SΩ
(A) ≤ AdvssMME,LMME,SMME

(B)

where LMME and SMME are the leakage algorithm and simulator for MME.

This proof bounds the security of RSEΩ in terms of the security of the MME used to build it. The
idea is that we are able to construct a rudimentary adversary B that can use A to make its guess for
it by converting between RSE and MME formats. Hence at minimum, B will always have the same
probability of winning as A but a stronger strategy could give a better results, hence the inequality.
We outline the full proof below.

Proof : We first define adversary B, which makes use of adversary A, as shown below. Note that
Adversary A = (A1, A2), and Adversary B = (B1, B2).

Adversary B1

(St,DB, (q1, ..., qn))←$ A1

{(a1, D1), ..., (an, Dn)} ← DB
For i = 0... log2(RSEΩ .KS):

For j = 0...2i − 1:
up← 2log2(RSEΩ .KS)−i · (j + 1)− 1
down← 2log2(RSEΩ .KS)−i · j
node← (log2(RSEΩ .KS)− i, j)
docs← ((ai, Di) : i ∈ {1...n}, down ≤ ai ≤ up)
M[node]← docs

L← ()
For i = 1...n:

Si ← Cover(qi, c)
L← L ∥ (n : n ∈ Si)

(l1, ..., ln)← L
Return (St,M, (l1, ..., ln))

Adversary B2(St,EDS, (tk1, ..., tkn))

For i = 1, 1 + c, ..., n− c+ 1:
Ti ← {tkx : i ≤ x < i+ c}

b′←$ A2(St,EDS, (T1, T1+c, ...Tn−c+1))
Return b′

We now define a series of hybrids.

8 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

Game G0 , G1

K←$ RSEΩ .KS
(St,DB, (q1, ..., qn))←$ A1

EDS←$ RSEΩ .Setup(K,DB)

For i = 1...n:

Ti ← RSEΩ .Token(K, qi, c)

lk ← LΩ(DB, (q1...qn))

(EDS, (T1, ..., Tn))← SΩ(lk)

b′←$ A2(St,EDS, (T1, ..., Tn))
Return b = b′

Game G2 , G3

(KSE,KF)←$ MME.KS
(St,DB, (q1, ...qn))←$ A1

{(a1, D1), ..., (an, Dn)} ← DB
For i = 0... log2(RSEΩ .KS):

For j = 0...2i − 1:
up← 2log2(RSEΩ .KS)−i · (j + 1)− 1
down← 2log2(RSEΩ .KS)−i · j
node← (log2(RSEΩ .KS)− i, j)
docs← ((ai, Di) : i ∈ {1...n}, down ≤ ai ≤ up)
M[node]← docs

L← ()
For i = 1...n:

Si ← Cover(qi, c)

Ti ← {MME.Token(KF, l) : l ∈ Di}

L← L||(l : l ∈ Si)

EDS←$ MME.Setup(KSE,M)

lk ← LMME(M, L)

(EDS, (tk1, ...tkc∗n))← SMME(lk)

b′←$ A2(St,EDS, (T1, ..., Tn))
Return b′ = 1

Using the above hybrids, we can show the following equations.

AdvssRSEΩ ,LΩ ,SΩ
(A) = Pr[G0]− Pr[G1] (1)

AdvssMME,LMME,SMME
(B) = Pr[G0]− Pr[G1] (2)

Combining equations (5) and (6), we can see that:

AdvssRSEΩ ,LΩ ,SΩ
(A) = Pr[G0]− Pr[G1]

= AdvssMME,LMME,SMME
(B)

To show equation (5), first let b and b′ be the random variables in Gss
RSEΩ ,LΩ ,SΩ

(A). Observe that G0

and G1 are Gss
RSEΩ ,LΩ ,SΩ

(A) when b = 1 and b = 0 respectively. Thus,

AdvssRSEΩ ,LΩ ,SΩ
(A) = Pr[Gss

RSEΩ ,LΩ ,SΩ
(A) : b′ = 1|b = 1]− Pr[Gss

RSEΩ ,LΩ ,SΩ
(A) : b′ = 1|b = 0]

= Pr[G0]− Pr[G1]

To show equation (6), let b and b′ be the random variables in Gss
MME,LMME,SMME

(B). Note that by
definition, MME.KS = RSEΩ.KS. Notice that if we inline Adversary B into Gss

MME,LMME,SMME
(B), we

get G2 when b = 1 and G3 when b = 0. Next, notice that if we inline RSEΩ.Setup and RSEΩ.Token
into G0, we get G2. Similarly, if we inline LΩ and SΩ into G1, we get G3. Thus,

AdvssMME,LMME,SMME
(B) = Pr[Gss

MME,LMME,SMME
(B) : b′ = 1|b = 1]− Pr[Gss

MME,LMME,SMME
(B) : b′ = 1|b = 0]

= Pr[G2]− Pr[G3]

= Pr[G0]− Pr[G1]

Having shown equations (5) and (6), we thus conclude our proof of the theorem.
Practical Security Combining these two proof together, we show that given the correct choice of
SE and F, with secure examples such as AES-CTR and HMAC-SHA-256, we can construct a secure
MMEπ which can then be used to construct a secure RSEΩ. Developers will now be able to use
RSEΩ and be assured of its security.

Title Suppressed Due to Excessive Length 9

7 C-cover Algorithm

This section covers a contribution in a different area of RSE, particularly in one kind of algorithms
used by RSE schemes in general. As mentioned in Section 3 the bottommost nodes of the binary
tree store documents. Rather than sending the token for every node within a range, cover algorithms
are used in RSE schemes to convert a large range to small set of nodes, known as a cover, that can
also be used to retrieve the same documents.

Fig. 2: Example of exact and over cover

Covers can be split into two types: exact
covers which use the minimal number of nodes
to cover a range exactly and overcovers which
may cover nodes beyond the range. These extra
nodes are known as overhead and the number
of nodes in a cover are its size. An example is
illustrated in in Figure 2.

C-cover C-covers are overcovers with a fixed
size c. We say a c-cover is optimal if its over-
head is minimised. In the previous example,
(2,0) is the optimal 1-cover because there is no other 1 cover that has less overhead. A math-
emtical defintion for c-cover can be found in Appendix C.

Advantages C-covers improve the efficiency of RSE as the query size is fixed to c and less tokens
have to be looked up. C-covers also improve the security of RSE scheme as the false positives
(overhead) reduce the information leaked to an adversarial server. Previously, optimal 1-cover
and 3-cover algorithms have been presented. In our previous work, we designed an optimal but
inefficient c-cover algorithm (DP-cover) with a runtime complexity of O(Rc) where R is the number
of nodes in the range, making it unpractical to use on large databases.

Our contribution We now introduce a novel efficient and optimal c-cover algorithm with
runtime complexity of O(c2) and a proof of optimality.

Fig. 3: An example showing the descending triangle structure of
an optimal cover

Algorithm Intuition Notice that all
optimal covers can be divided into a
left and right side consisting of de-
scending triangles as illustrated in Fig-
ure 3. We call nodes that that lie at the
feet of the largest triangles in an op-
timal cover hinge nodes. The hinge
node can be calculated with a for-
mula.

Since there is only one side of
overhead to consider in each side, it
is trivial to find the optimal cover for
the ranges divided by the hinge node.
The algorithm then constructs all covers with different distributions of cover sizes on the left and
right sides and picks the one with the least total overhead as the optimal c-cover. In Appendix C.2 ,
we give an optimal c-cover algorithm and prove its optimality.

10 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

8 Future Work

Security Comparisons Further work can be done to compare the security of RSEΩ with other
existing RSE schemes using game-playing provable security. For example, R-RSE which was
outlined in our previous work. More can also be done to study the effects of different types of
cover algorithms on the query leakage and security of the scheme. Namely, the effects of universal
overcovers, explored in our previous paper, could be looked into.

9 Conclusion

Overcover Algorithm Our novel c-cover algorithm significantly advances prior work by reducing
search bandwidth while maintaining the security advantages of overcovers. It also enhances effi-
ciency by reducing search time from exponential to a near constant time in practical cases, making
c-covers feasible for real RSE scheme implementations.
Security Proofs Through our proofs, we have shown that the security of MMEπ can be reduced to
the security of the SE and F, and that the security of our RSEΩ scheme only depends on the security
of the MME used to build it. Our MMEπ proof allows for schemes built upon it to be easily analysed
in future and for the security of current implementations to be more easily analysed. Our RSEΩ

proof allows for the assurance of practical security for RSEΩ so developers can implement it in
real-world cloud storage applications, thereby enhancing security and confidentiality for users.

10 Acknowledgements

We would like to thank our mentors, Dr Ruth Ng Ii-Yung and Mr John Khoo Teng Fong, for their
continued support and guidance throughout this project.

Title Suppressed Due to Excessive Length 11

References

[1] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security of Triple
Encryption. Cryptology ePrint Archive, Paper 2004/331. 2004. URL: https://eprint.iacr.
org/2004/331.

[2] David Cash et al. “Highly-Scalable Searchable Symmetric Encryption with Support for Boolean
Queries”. In: Advances in Cryptology – CRYPTO 2013. Ed. by Ran Canetti and Juan A. Garay. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 353–373. ISBN: 978-3-642-40041-4.

[3] Ioannis Demertzis et al. “Practical Private Range Search in Depth”. In: ACM Trans. Database Syst. 43.1
(Mar. 2018). ISSN: 0362-5915. DOI: 10.1145/3167971. URL: https://doi.org/10.1145/
3167971.

[4] Ioannis Demertzis et al. “Practical Private Range Search Revisited”. In: Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016. Ed. by Fatma Özcan, Georgia Koutrika, and Sam Madden. ACM, 2016,
pp. 185–198.

[5] Sky Faber et al. “Rich queries on encrypted data: Beyond exact matches”. In: European symposium on
research in computer security. Springer. 2015, pp. 123–145.

[6] Francesca Falzon et al. Range Search over Encrypted Multi-Attribute Data. Cryptology ePrint Archive,
Paper 2022/1076. 2022. URL: https://eprint.iacr.org/2022/1076.

[7] Ruth Ng et al. Structured Encryption for Indirect Addressing. Cryptology ePrint Archive, Paper
2023/1146. 2023. URL: https://eprint.iacr.org/2023/1146.

[8] Richard Jun Quan Ong, Keer Guan, and Ruth Ii-Yung Ng. New Optimal Algorithms for Computing
Binary Tree Overcovers in Range Searchable Encryption. 2024. URL: https://www.dsta.gov.
sg/staticfile/ydsp/projects/files/posters/New_Optimal_Algorithms_
for_Computing_Binary_Tree_Overcovers_in_Range_Searchable_Encryption.
pdf.

[9] Cong Zuo et al. “Forward and Backward Private DSSE for Range Queries”. In: IEEE Transactions on
Dependable and Secure Computing 19.1 (2022), pp. 328–338.

https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331
https://doi.org/10.1145/3167971
https://doi.org/10.1145/3167971
https://doi.org/10.1145/3167971
https://eprint.iacr.org/2022/1076
https://eprint.iacr.org/2023/1146
https://www.dsta.gov.sg/staticfile/ydsp/projects/files/posters/New_Optimal_Algorithms_for_Computing_Binary_Tree_Overcovers_in_Range_Searchable_Encryption.pdf
https://www.dsta.gov.sg/staticfile/ydsp/projects/files/posters/New_Optimal_Algorithms_for_Computing_Binary_Tree_Overcovers_in_Range_Searchable_Encryption.pdf
https://www.dsta.gov.sg/staticfile/ydsp/projects/files/posters/New_Optimal_Algorithms_for_Computing_Binary_Tree_Overcovers_in_Range_Searchable_Encryption.pdf
https://www.dsta.gov.sg/staticfile/ydsp/projects/files/posters/New_Optimal_Algorithms_for_Computing_Binary_Tree_Overcovers_in_Range_Searchable_Encryption.pdf

12 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

A Definitions

A.1 Symmetric Encryption

A symmetric encryption scheme is used for encrypting and decrypting strings of arbitrary length. A
symmetric encryption scheme SE defines:

– SE.KS, the set of all possible keys K
– SE.Enc : K ×M → C, a deterministic encryption function that takes in K ∈ SE.KS and

message M ∈ {0, 1}∗ of arbitrary length and returns encrypted message C ∈ {0, 1}∗ of
arbitrary length

– SE.Dec : K × C →M , a deterministic decryption function that takes K and C and returns M
– SE.cl : Z→ Z+, a ciphertext length function that maps plaintext length to ciphertext length.

We say that a symmetric encryption scheme is correct if for all K,M as above, SE.Dec(K, SE.Enc(K,M)) =
M .

A.2 Function Families

A function family scheme is also known as a cryptographic hash function and maps arbitary length
bitstrings to a constant length bitstring. A function family F defines:

– F.KS, the set of all possible keys
– F.IS, the set of all possible inputs
– F.ol, a postive integer denoting fixed length of output
– F.Ev : K × I → O, a deterministic evaluation algorithm that takes in K ∈ F.KS, I ∈ F.IS and

returns O ∈ {1, 0}F.ol

A.3 MME Definition

Multimap data structure The multimap data type MMdt is a lookup table that maps all labels of
some fixed bitlength MMdt.lLen to sequences of values of fixed bitlength MMdt.vLenn, and all
other labels to (). We say |MMdt| =

∑k
i=1(#(MMdt[i])), the number of labels in MMdt.

A MME scheme MME defines:

– MME.KS, the set of all possible key pairs (KF, FSE)
– lLen, the positive integer that denotes label length
– vLen, the positive integer that denotes document length
– MME.Eval : M× l→M[l], which is a deterministic evaluation function that takes in multi-map
M and l ∈ {1, 0}lLen and returns M[l]

– MME.Setup : K ×M→ EDS, a deterministic encryption function that takes in M and a key
K ∈ MME.KS and returns an encrypted document set EDS

– MME.Token : K × l→ tk, a token function that takes in K and l and returns tk, a token.
– MME.Search : l × EDS→ {C1, ..., Cn}, a search function that takes in l and EDS and returns a

set of encrypted documents, {C1, ..., Cn}
– MME.Dec : K × C → D, a decryption function that takes in K, and an encrypted document

and returns a document.

We require that for any K ∈ MME.KS , M and l that if EDS ← MME.Setup(K,M) and tk ←
MME.Token(K, l), then MME.Dec(K,MME.Search(tk,EDS)) = MME.Eval(M, l)

Title Suppressed Due to Excessive Length 13

A.4 RSE Definition

A RSE scheme RSE defines:

– RSE.KS, the set of all possible keys
– RSE.max, the largest positive integer index possible for a document
– RSE.dl, the positive integer that denotes document length
– RSE.Setup : RSE.KS× DB → EDS, an algorithm which takes a Key K ∈ RSE.KS, database
DB and returns EDS, Encrypted Data Structure. We require that DB = {(a1, D1), ..., (ax, Dx)}
for some positive integer x, such that for all i ∈ {1...x},
• 1 ≤ ai ≤ RSE.max
• Di ∈ {0, 1}RSE.dl
• For all i, j, if i ̸= j then Di ̸= Dj

• We say that allDB is the set of all possible databases that meet the above requirements.
– RSE.Token : K × q → tk, an algorithm which takes a Key K ∈ RSE.KS and q, a query

consisting of tuple of positive integers, (a, b) where 1 ≤ a ≤ b ≤ RSE.max and returns a token
tk, bit-string of fixed length.

– RSE.Search : tk × EDS → {(a1, C1), ..., (an, Cn)} , an algorithm which takes a bit-string of
arbitrary length from the output of RSE.Token and EDS, and a set of encrypted documents
{(a1, C1), ..., (an, Cn)}.

– RSE.Dec : K × (ai, Ci)→ (ai, Di), an algorithm which takes a Key K ∈ RSE.KS and (ai, Ci)
and returns (ai, Di) ∈ DB

We require that for any K ∈ RSE.KS , DB and q that if EDS ← RSE.Setup(K,DB) and tk ←
RSE.Token(K, q), then RSE.Dec(K,RSE.Search(tk,EDS)) = RSE.Eval(DB, l)

B Algorithms

B.1 MME algorithms

Alg MMEπ.Setup(K,M)

(KSE,KF)← K
For all M[l] in M :

tk ← F.Ev(KF, l)
(v1, ..., vn)←M[l]
For i in 1, ..., n:

EDS[F.Ev(tk, i)]←$ SE.Enc(KSE, vi)
Return EDS

Alg MMEπ.Search(tk,EDS)

i = 1
While exist = True:

tki ← F.Ev(tk, i)
if EDS[tki] =⊥:

exist = False
else:

ci ← EDS[tki]
i = i+ 1

Return (c1, ..., cn)

Alg MMEπ.Token(KF, l)

tk ← F.Ev(KF, l)
Return tk
Alg MMEπ.Dec(KSE, (c1, ..., cn))

For i in 1, ..., n:
vi ← SE.Dec(KSE, ci)

Return (v1, ..., vn)
Alg MMEπ.Eval(l,M)

(v1, ..., vn)←M[l]
Return (v1, ..., vn)

Fig. 4: Algorithm definitions for MMEπ

MMEπ Algorithms Figure 4 defines MMEπ, an example of a MME scheme. MMEπ.Setup takes
in K, the keyset and M which is the multimap to be encrypted. For each label in M, a token is
generated with the keyed cryptographic hash function. Then a sub-token is generated by using a

14 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

token as a key and the integer corresponding to the index of a value mapped to by that label as an
input to the cryptographic hash function.

The lookup table EDS is the encrypted data set maps subtokens to its respective value encrypted
by symmetric encryption. MMEπ.Search takes in a token and uses it as the key to the cryptographic
hash function to generate subtokens by hashing integers starting from 1 and incrementing each
round. It then uses the subtoken to lookup the correct encrypted value until it receives an error after
which it returns all encrypted values in a sequence.

B.2 RSE algorithms

AlgRSEΩ .Setup(K, {(a1, D1), ..., (ax, Dx)})
For i = 0... log2(RSEΩ .KS) do:

For j = 0...2i − 1 do:
right← 2log2(RSEΩ .KS)−i · (j + 1)− 1
left← 2log2(RSEΩ .KS)−i · j
node← (log2(RSEΩ .KS)− i, j)
docs← ((ai, Di) : i ∈ {1...x}, left ≤ ai ≤ right)
M[node]← docs

EDS← MME.Setup(K,M)
Return EDS

AlgRSEΩ .Token(K, (a, b), c)

S ← Cover((a, b), c)
T ← ∅
For (i, j) ∈ S do:

T ← T ∪ {MME.Token(K, (i, j))}
Return T

AlgRSEΩ .Search(T,EDS)

C ← ∅
For tk ∈ T do:

C ← C ∪ {MME.Search(tk,EDS)}
Return C

AlgRSEΩ .Dec(K, (a, b), C)

D ← ∅
For c ∈ C do:

((a1, D1), ..., (ax, Dx))← MME.Dec(K, c)
For i = 1...x do:

If a ≤ ai ≤ b then:
D ← D ∪ {Di}

Return D

AlgRSEΩ .Eval((a, b), {(a1, D1), ..., (ax, Dx)})
D ← ∅
For i = 1...x do:

If a ≤ ai ≤ b then:
D ← D ∪ {Di}

Return D

Fig. 5: Algorithm definitions for RSEΩ

RSEΩ Algorithms RSEΩ is an example of a RSE scheme and is built upon any MME scheme
and defined in Figure 5. RSEΩ.Setup takes in a secret key K and database DB. It then for all nodes
in the binary tree computes their leftmost and rightmost descendant node. These nodes are then
all stored under a multi-map the node index as their label. The multi-map is then encrypted using
MME.Setup. The other functions likewise use their MME counterparts and converts them into sets.

C C-cover Algorithm and Proof

C.1 Definitions

Our algorithms are defined in terms of infinite binary trees. Figure 6 shows a subsection of this tree.
Nodes are referred to in the notation (h, p) where h is the height of the nodes which is defined as
the layer the node is on, counted from the bottom of the tree and p is the position of the node in its
layer, counted from the left.

Title Suppressed Due to Excessive Length 15

Fig. 6: Infinite Binary Tree used for C-cover algorithm

Let S := {(i, j) : i, j ∈ N} represent the
set of all nodes in the tree. A leaf is defined as
a node with no nodes connected below it (ie.
At the bottom most layer of the tree) and has a
height of 0. Let L = {(0, j) : j ∈ N} represent
the set of all leaves.

We refer to node x as a descendant of node
y and y as a predecessor of x if y is on the
shortest path between x and the root node. We
define function desc(n) s.t. ∀n ∈ S :

desc(n) = {n′ ∈ L : n′ is a descendant of n}

Then we say that C ⊆ S is a cover of (a, b) where a, b ∈ N and a ≤ b if :⋃
n∈C

desc(n) ⊇ {(0, a), (0, a+ 1), . . . , (0, b)}

We say that C is an optimal c-cover of (a, b) if :

– C covers (a, b)
– |C| ≤ c
– ∀n, n′ ∈ C and n ̸= n′, desc(n)

⋂
desc(n′) = ∅ (non-overlapping)

– for all other covers C ′ of (a, b) ∣∣∣∣∣ ⋃
n∈C′

desc(n)

∣∣∣∣∣ ≥
∣∣∣∣∣⋃
n∈C

desc(n)

∣∣∣∣∣
Note that for some a, b, c there can exist more than 1 optimal c-cover.

We say that Alg is a Non-universal Algorithm if on any input (a, b, c) it always returns some optimal
c-cover of (a, b).

Given a range (a, b), let C = Cover(a, b, c). We define the hinge node l as a leaf in cover C such
that such that C is made up of 2 sub-covers which are covers of ranges (k, l − 1) and (l,m), with
nodes of increasing and decreasing heights respectively. Note that k ≤ a and m ≥ b.

C.2 C-cover Algorithm and Proof

The Non-universal Algorithm is based on finding the hinge node, (1, 2s · i), a leaf node which should
be able to separate the cover into 2 sides with nodes of descending heights as they cover moves
further from the hinge node. In the following section, we will define our algorithm, and at the same
time prove its optimality.

A hinge value can be found using the algorithm below. Intuitively, we first find the total number of
leaves in the range (a, b), which we express as the size, s. We then find the leaf in the range (a, b)
which has the largest power of 2. The algorithms for the calculation of the hinge node are shown

16 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

below.

For a range (a, b) where r = b− a+1, s = ⌊log2 r⌋. We then find x s.t a ≤ 2s · i ≤ b. Additionally,
if there are i, i′ satisfying this condition, i is the even one. The hinge node is (0, 2s · i) and x = 2s · i
is the hinge value.

We can calculate the hinge node using HingeValue(a, b)

AlgHingeValue(a, b)
s← ⌊log2(b− a+ 1)⌋
S ← {j ∈ N : a ≤ j · 2s ≤ b}
If S = {x}:

Return x · 2s
Else:

Let y ∈ S be the even integer
Return y · 2s

We can show that for all ranges (a, b), there exists an optimal cover with this hinge node “at the
base” of the node of greatest height.

Having calculated the hinge value, we use 2 algorithms to compute the left and right covers.
We generate the left and right subcovers using LSubCover and RSubCover respectively, where
LSubCover returns the c-cover for [a, x) and RSubCover returns the c-cover for [x, b] provided x is
hinge value.

AlgLSubCover(a, x, c)
s← ⌊log2(x− 1− a+ 1)⌋
If 2s = x− a :

C ← {(s, x
2s
− 1)}

Else if c = 1 :
C ← {(s+ 1, x

2s+1 − 1)}
Else:

C ← LSubCover(a, x− 2s, c− 1) ∪ {(s, x
2s
− 1)}

Return C

AlgRSubCover(x, b, c)
s← ⌊log2(b− x+ 1)⌋
If 2s = b− x+ 1 :

C ← {s, x
2s
}

Else if c = 1 :
C ← {(s+ 1, x

2s+1)}
Else:

C ← {(s, x
2s
)} ∪ RSubCover(x+ 2s, b, c− 1)

Return C

Now, we combine the above algorithms with a final cover algorithm Cover. We do this by cycling
through all possible distributions of c (for c ≥ 2) between the left and right subcovers, and finding
the distribution that gives the most optimal cover.

AlgCover(a, b, c)
n← HingeValue(a, b)
If n = a :

C ← RSubCover(a, b, c)
Else:

For i = 1 . . . c− 1 do:
Ci ← LSubCover(a, n, i) ∪ RSubCover(n, b, c− i)

Let j = argmin
i=1...c−1

∑
(x,y)∈Ci

2x

C ← Cj

Return C

Title Suppressed Due to Excessive Length 17

Lemma 1: Given a range (a, b) where a < b, there exists an optimal c-cover C where either for
some n ∈ C, the leftmost leaf descendant of n is the hinge node of (a, b).

Proof : We can show this via a proof by contradiction. Suppose there exists an optimal cover C1

where the hinge node and the 2 next to it are covered by the same cover. Based on our definition of
a hinge node, it is the foot of the largest triangle that can fit in a range (a, b). Thus, any cover that
covers the hinge node and the 2 next to it will always overcover the range (a, b). Let the amount of
overcover (the number of extra leaves) be e.

Using our algorithm and the notion of a hinge node, we can always generate a c-cover C2 for all
c ≥ 2 with overcover e′, such that e′ ≤ e. This can be shown by first considering the case where
c = 1, where our algorithm is redundant and the hinge node definitely needs to be covered. For
all other cases, our algorithm returns a cover C2 that is minimally as good as C1. Thus, C1 cannot
possibly be the only optimal cover, as our algorithm can return a C2 which is as good as, or better
than, C1.

Lemma 2: Given a range (2s · i, b) and cover size 1, let R1 be the output of RSubCover(2s · i, b, 1),
then R1 is an right-optimal 1-cover of the range (2s · i, b).

Proof : Our algorithm will return the smallest cover that covers the range. Notice that if it is any
smaller, it will not cover the range fully and will not meet the requirements of a cover.

We can show that algorithms RSubCover and LSubCover algorithms are optimal via induction. We
will show optimality for the RSubCover algorithm and the proof for the LSubCover algorithm is
analogous. We say a subcover is right-optimal if (2s · i, b) is the leftmost leaf descendant, and the
overhead on the right is minimal.

Lemma 3: Given a range (2s · i, b) and cover size c, let R be the output of RSubCover(2s · i, b, c),
then R is an right-optimal 1-cover of the range (2s · i, b).

Proof : Consider the case where c = 2. Notice that in order to minimise overcover, the first cover
should always cover the largest range that does not exceed (x, b). Let this cover cover the range
(x, z), where z = 2t ·j. Then notice that the range we have left to cover is (z, b), where b−x+1 < 2t.
This is very similar to our original range (x, b), where b − x + 1 < 2s, and we can thus find a
right-optimal 2-cover. This same process can be repeated to find a right-optimal n-cover given a
right-optimal (n-1)-cover.

Theorem: Given a range (a, b) and a cover size c, let C = Cover(a, b, c), then C is an optimal
c-cover of the range (a, b).

Proof : Using Lemma 3, we have now proven that RSubCover returns a right-optimal c-cover for
right side of the hinge node. Similarly, we can prove that LSubCover returns a left-optimal c-cover
for the left side of the hinge node.

If the hinge node of (a, b) is (0, a), then our algorithm is optimal since RSubCover is optimal. A
similar argument can be made for if the hinge node is (0, b), since LSubCover is optimal as well.

18 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

If the hinge node lies outside the range (a, b), this implies that all nodes are in strictly descending
order in just one direction. Regardless of whether the hinge node lies to the left of right of the range
(a, b), our algorithm is optimal since both LSubCover and RSubCover are optimal.

Else, there exists an optimal c-cover C where for some n← C, the leftmost leaf descendant of n is
the hinge node of (a, b) (Lemma 1). Notice that lines 5 and 6 of our algorithm cycles through all
possible distributions of c between the left and right subcovers, and line 7 chooses the most optimal
one. We have thus proven that C is an optimal c-cover of the range (a, b).

D Provable Security

D.1 Static SE game

Game Gind
SE (A)

KSE←$ SE.KS
b←$ {0, 1}
(St, (M1, ...,Mn))← A
If b = 1:

For i in 1, ..., n:
Ci←$ SE.Enc(KSE,Mi)

Else:
For i in 1, ..., n:

Ci←$ {0, 1}|SE.cl(M)|

b← A(St, C1, ..., Cn)
Return b = b′

Here we have a static IND-$ game. The game randomly generates a key and randomly selects bit 1
or 0. Adversary A then inputs however many messages M it wishes into the game. It also gives state,
St, which it uses to store any relevant information. The game then performs SE.Enc or generates
a random string for each message respectively. This is returned to the adversary who guesses the
“world” the game is in.

D.2 Dynamic PRF game

We now proceed to define a dynamic indistinguishability game for F as shown below.

Game Gprf
F (A)

KF←$ F.KS
b←$ {0, 1}
b′←$ AFn

Return b = b′

Oracle Fn(x)

If b = 1:
Return F.Ev(KF, x)

Else:
If T[x] =⊥:

T[x]←$ F.IS
Return T[x]

Title Suppressed Due to Excessive Length 19

In the PRF game, the real world using F.Ev to hash a given message and the output is deterministic
based on the inputs. The ideal world is simulates this by using a pseudo-random function. For every
input x to the oracle, an output is selected from the input set F.IS at random. The oracle stores the
previous values of x and their corresponding outputs, so that if an identical input x is re-submitted,
the same output is returned. The advantage of adversary A playing the above game is AdvprfF (A).

D.3 MMEπ Leakage and Simulator Functions

We define MMEπ leakage and simulator functions as below.

AlgLπ(M, (l1, ..., ln))

total←
∑k

i=1(#(M[i]))
For i = 1...n do:

voli ← #(M[li])
epi ← min({j : 1 ≤ j ≤ i, li = lj})

Return (total, (vol1, ..., voln), (ep1, ..., epn))

AlgSπ(total, (vol1, ..., voln), (ep1, ..., epn))
For i = 1...n:

If epi = i:
tki←$ {0, 1}F.ol
For j = 1...voli:

EDS[F.Ev(tki, j)]←$ {0, 1}vLen
Else:

tki ← tkepi
While |EDS| < total:

l←$ {0, 1}F.ol
EDS[l]←$ {0, 1}vLen

Return (EDS, (tk1, ..., tkn))

Lπ returns the leakage, which comprises of 3 main components. total, the total number of docu-
ments in the database, which is calculated by counting the number of documents in each database
entry. (vol1...voln) is the query volume, the number of documents each query returns, which is
counted for each query. (ep1...epn) is the equality pattern, which notes down any repeated queries
by associating them with the previous most query that was equal.

In Sπ, equality pattern of queries, (ep1...epn), is used to randomly generate tokens of length F.ol that
follow a pseudo-random function. The documents returned for each query is randomly generated
for each unique token to the length of vLen. At the same time, the algorithm counts how much of
the total number of documents, total, has been used up, and randomly generates the needed tokens
and documents until |EDS| = total. The simulator returns EDS and a tuple of tokens (tk1...tkn),
that follow the equality patterns, query volume and total number of documents.

D.4 RSEΩ Leakage and Simulator Functions

We define RSEΩ leakage and simulator functions as below.

AlgLΩ(DB, (q1, ..., qk))

l← (l : l ∈ Cover(qi, c))
{(a1, D1), ..., (ax, Dx)} ← DB
For i = 0... log2(RSEΩ .KS) do:

For j = 0...2i − 1 do:
up← 2log2(RSEΩ .KS)−i · (j + 1)− 1
down← 2log2(RSEΩ .KS)−i · j
node← (log2(RSEΩ .KS)− i, j)
docs← ((ai, Di) : i ∈ {1...x}, down ≤ ai ≤ up)
M[node]← docs

(total, (vol1...voln), (ep1...epn))← LMME(M, l)
Return lk

AlgSΩ(total, (vol1...voln), (ep1...epn))

(EDS, (T1...Tn))← SMME(total, (vol1...voln), (ep1...epn))
Return (EDS, (T1...Tn))

20 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

LΩ uses the Cover algorithm to generate labelled sub-queries for all q ∈ (q1...qy). The label of each
query is a tuple in the form of (a, b), where the integer value a refers to which query the sub-query
was generated from, and value of b refers to in which order the sub-queries of a select query was
generated. In addition, DB is converted to a table M, to imitate the data structure used in MME. The
sub-queries and M are fed into LΩ as they are no different from the expected input.

SΩ is similar to SΩ, except it returns a set of tuples, (T1...Tn), with Ti containing the tokens
corresponding to the query qi.

D.5 Leakage Games

We define the following leakage games for MMEπ and RSEΩ

Game Gss
RSE,L,S(A)

K←$ RSEΩ .KS
b←$ {0, 1}
(St,DB, (q1, ..., qn))←$ A1

If DB /∈ allDB:
Return false

If b = 1:
EDS←$ RSEΩ .Setup(K,DB)
For i in 1...n do:

Ti ← RSEΩ .Token(K, qi, c)
Else:

lk ← LΩ(DB, (q1, ..., qn))
(EDS, (T1, ..., Tn))← SΩ(lk)

b′←$ A2(St,EDS, (T1, ..., Tn))
Return b = b′

Game Gss
MME,LMME,SMME

(B)

K←$ MME.KS
b←$ {0, 1}
(St,M, (l1, ..., ln))←$ B1

If M /∈ allM:
Return false

If b = 1:
EDS←$ MME.Setup(K,M)
For i in 1...n do:

tki ← MME.Token(K, li)
Else:

lk ← LMME(M, (l1, ..., ln))
(EDS, (tk1...tkn))← SMME(lk)

b′←$ B2(St,EDS, (tk1, ..., tkn))
Return b = b′

In the above games, the adversary provides a St for it to store information that it needs to decide if
it is in the “real” or “ideal” world. The adversary also provides a database, together with n queries.

We will explain how the MME game works and this intuition can be used for RSE. In the “real”
world, EDS generated by MME.Setup and the respective tokens are generated for all the queries
using MME.Token. In the “ideal” world, an ideal EDS and corresponding tokens are generated by
a simulator SMME which takes lk as defined by LMME(DB, (q1...qn)). The security of the scheme
requires that only certain properties of the database and queries are leaked, as defined by lk. As
such, if the adversary can distinguish between an EDS and tokens generated by the simulator and
ones generated in the “real” world, there is some other leakage that is excluded in the leakage
function. More intuitively, if the adversary cannot distinguish between them, it can be concluded
that all the leakage is quantified by the leakage function.

The advantage of Adversary A is AdvssMME,LMME,SMME
= 2Pr[Gss

MME,LMME,SMME
(A)]− 1. Intuitively,

the purpose of Gss
MME,LMME,SMME

is to show whether or not the leakage functions used cover all
possible leakage of EDS and all tk. If so, AdvssMME,LMME,SMME

= 0. The advantage of Adversary B is
AdvssRSE,LRSE,SRSE

= 2Pr[Gss
RSE,L,S(B)]− 1, and a similar logic applies.

D.6 Proof of MMEπ Security

For reference, these are the games played by B, C and D respectively:

Title Suppressed Due to Excessive Length 21

Game Gss
MME,Lπ,Sπ

(A)

(A1, A2)← A
K←$ MME.KS
b←$ {0, 1}
(St,M, (l1, ..., ln))←$ A1

If M /∈ allM:
Return false

If b = 1:
EDS←$ MME.Setup(K,M)
For i in 1...n:

tki ← MME.Token(K, li)
Else:

lk ← LMME(M, (l1, ..., ln))
(EDS, (tk1...tkn))← SMME(lk)

b′←$ A2(St,EDS, (tk1, ..., tkn))

Game Gind
SE (B)

KSE←$ SE.KS
b←$ {0, 1}
b′ ← AEnc

Return b = b′

Oracle Enc(x)

c1←$ SE.Enc(KSE, x)
c0←$ {0, 1}SE.cl(|x|)
Return cb

Game Gprf
F (C) Gprf

F (D)

KF←$ F.KS
b←$ {0, 1}
b′←$ CFn DFn

Return b = b′

Oracle Fn(x)

If b = 1:
Return F.Ev(KF, x)

Else:
If T[x] =⊥:

T[x]←$ {0, 1}F.ol
Return T[x]

Proof : We first define adversaries B, C and D, which are built from adversary A, as shown below.
Adversaries B, C and D, try to win their games by using adversary A to make guesses for them.
Hence, they need to “hijack” Adversary A. Note that A = (A1, A2).

Adversary BEnc

(St,M, (l1, ..., ln))←$ A1

KF←$ F.KS
If M /∈ allM:

Return false
For all M[l] in M:

tk ← F.Ev(KF, l)
(v1, ..., va)←M[l]
For j = 1...a:

EDS[F.Ev(tk, j)]← Enc(vj)
For i = 1...n:

tki ← F.Ev(KF, li)
b′←$ A2(St,EDS, (tk1, ..., tkn))
Return b′

Adversary CFn

(St,M, (l1, ..., ln))←$ A1

If M /∈ allM:
Return false

For all M[l] in M:
tk←$ Fn(l)
(v1, ..., va)←M[l]
For j =1...a:

EDS[F.Ev(tk, j)]←$ {1, 0}vLen
For i = 1...n:

tki ← Fn(li)
b′←$ A2(St,EDS, (tk1, ..., tkn))
Return b′

In the above table, B essentially runs MMEπ.Setup and token generation is real. However, since
it is trying to distinguish between real and fake encryption, it uses the Enc oracle from Gind

SE (B)
to perform encryption on values. B then feeds EDS and tokens to A2 and uses their guess. C does
something similiar, but now performs a modified version of Lπ. Encryption on values is always
faked, while tokens are generated using the Fn oracle. Both adversaries convert the input M and ls
into EDS and tks, before feeding them back into A and taking A’s guess.

22 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

Adversary DFn

(St,M, (l1, ..., ln))←$ A1

x← |{l1, ..., ln}|
p←$ {1, ...,m− x}
counter ← 1
For all M[l] in M:

(v1, ..., va)←M[l]
tk←$ {0, 1}lLen
For all i = 1...n where l = li:

tki ← tk
For j = 1...a:

If l ∈ {l1, ..., ln} or counter > p:
EDS[F.Ev(tk, j)]←$ {0, 1}vLen

Else if counter = p:
EDS[Fn(j)]←$ {0, 1}vLen
counter ← counter + 1

Else:
EDS[{1, 0}lLen]←$ {0, 1}vLen
counter ← counter + 1

b′←$ A2(St,EDS, (tk1, ..., tkn))
Return b′

We now define a series of hybrids which we will explain and use later on.

Game G0

K←$ MME.KS
(St,M, (l1, ..., ln))←$ A1

If M /∈ allM or :
Return false

total←
∑k

i=1(#(M[i]))
For i = 1...n do:

voli ← #(M[li])
epi ← min({j : 1 ≤ j ≤ i, li = lj})

For i = 1...n:
If epi = i:

tki←$ {0, 1}F.ol
For j = 1...voli:

EDS[F.Ev(tki, j)]←$ {0, 1}vLen
Else:

tki ← tkepi
While |EDS| < total:

l←$ {0, 1}F.ol
EDS[l]←$ {0, 1}vLen

b′←$ A2(St,EDS, (tk1, ..., tkn))
Return b = b′

Game G1

(KSE,KF)←$ MME.KS
(St,M, (l1, ..., ln))←$ A1

If M /∈ allM:
Return false

For all M[l] in M:
tk ← F.Ev(KF, l)
For all i = 1...n where li = l:

tki ← tk
(v1, ..., va)←M[l]
For j = 1...a:

EDS[F.Ev(tk, j)]← SE.Enc(KSE, vj)
b′←$ A2(St,EDS, (tk1, ..., tkn))
Return b′ = 1

Title Suppressed Due to Excessive Length 23

Game G2 , G3

KF←$ F.KS

(St,M, (l1, ..., ln))←$ A1

If M /∈ allM:
Return false

For all M[l] in M:

tk ← F.Ev(KF, l) tk←$ {1, 0}lLen

For all i = 1...n where li = l:
tki ← tk

(v1, ..., va)←M[l]
For j =1...a do:

EDS[F.Ev(tk, j)]←$ {1, 0}vLen
b′←$ A2(St,EDS, (tk1, ..., tkn))
Return b′ = 1

Game G4

(St,M, (l1, ..., ln))←$ A1

If M /∈ allM:
Return false

For all M[l] in M:
tk←$ {1, 0}lLen
For all i = 1...n where li = l:

tki ← tk
(v1, ..., va)←M[l]
For j = 1...a:

If l ∈ {l1, ..., ln}:
EDS[F.Ev(tk, j)]←$ {1, 0}vLen

Else: EDS[{1, 0}lLen]←$ {1, 0}vLen
b′←$ A2(St,EDS, (tk1, ..., tkn))
Return b′ = 1

Game Hp

(St,M, (l1, ..., ln))←$ A1

If M /∈ allM:
Return false

counter ← 1
For all M[l] in M:

(v1, ..., va)←M[l]
tk←$ {0, 1}lLen
For all i = 1...n where l = li:

tki ← tk
For j = 1...a:

If l ∈ {l1, ..., ln} or counter > p:
EDS[F.Ev(tk, j)]←$ {1, 0}vLen

Else:
EDS[{1, 0}lLen]←$ {1, 0}vLen
counter ← counter + 1

b′←$ A2(St,EDS, (tk1, ..., tkn))
Return b′ = 1

Using the above hybrids, we can show the following equations.

AdvssMME,Lπ ,Sπ
(A) = Pr[G1]− Pr[G0] (3)

AdvindSE (B) = Pr[G1]− Pr[G2] (4)

AdvprfF (C) = Pr[G2]− Pr[G3] (5)

(m− x) · AdvprfF (D) = Pr[G3]− Pr[G0] (6)

Combining equations (1), (2), (3) and (4) we can see that:

AdvssMME,Lπ ,Sπ
(A) = Pr[G1]− Pr[G0]

= Pr[G1]− Pr[G2] + Pr[G2]− Pr[G3] + Pr[G3]− Pr[G0]

= AdvindSE (B) + AdvprfF (C) + (m− x) · AdvprfF (D)

To show equation (1), first let b and b′ be the random variables in Gss
MME,Lπ ,Sπ

(A). Notice that when
b = 1, the game runs MMEπ.Setup and MMEπ.Token to generate EDS and tk1, ..., tkn respectively.
Inlining these algorithms into Gss

MME,Lπ ,Sπ
gives us G1. When b = 0, Gss

MME,Lπ ,Sπ
(A) runs Lπ and

24 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

Sπ to fake EDS and tk1, ..., tkn and this gives G0.

AdvssMME,Lπ ,Sπ
(A) = Pr[Gss

MME,Lπ ,Sπ
(A) : b′ = 1|b = 1]− Pr[Gss

MME,Lπ ,Sπ
(A) : b′ = 1|b = 0]

= Pr[G1]− Pr[G0]

To show equation (2), first let b and b′ be the random variables in Gind
SE (B). Observe that G1 and G2

are Gind
SE (B) when b = 1 and b = 0 respectively. Thus,

AdvindSE (B) = Pr[Gind
SE (B) : b′ = 1|b = 1]− Pr[Gind

SE (B) : b′ = 1|b = 0]

= Pr[G1]− Pr[G2]

To show equation (3), first let b and b′ be the random variables in Gprf
F (C). Observe that G2 and G3

are Gprf
F (C) when b = 1 and b = 0 respectively. Thus,

AdvprfF (C) = Pr[Gprf
F (C) : b′ = 1|b = 1]− Pr[Gprf

F (C) : b′ = 1|b = 0]

= Pr[G2]− Pr[G3]

Notice that G3 and G0 fake the EDS labels differently. Hence, adversary D will “bridge” this gap.

To show equation (4), let b and b′ be the random variables in Gprf
F (D). Since D picks a p to play the

Gprf
F game with equal probability from {1, ...,m− x},

Pr[p = 1] + Pr[p = 2] + ...+ Pr[p = m− x] = 1

Pr[p = i] =
1

m− x

It thus follows that,

Pr[Gprf
F (D)] =

m−x∑
i=1

Pr[Gprf
F (D)|p = i] Pr[p = i]

Hence using this identity,

AdvprfF (D) = Pr[Gprf
F (D) : b′ = 1|b = 1]− Pr[Gprf

F (D) : b′ = 1|b = 0]

=
m−x∑
i=1

(Pr[Gprf
F (D) : b′ = 1|b = 1, p = i] · Pr[p = i])

−
m−x∑
i=1

(Pr[Gprf
F (D) : b′ = 1|b = 0, p = i] · Pr[p = i])

=
1

m− x
(
m−x∑
i=1

(Pr[Gprf
F (D) : b′ = 1|b = 1, p = i])

−
m−x∑
i=1

(Pr[Gprf
F (D) : b′ = 1|b = 0, p = i]))

(m− x) · AdvprfF (D) =
m−x∑
i=1

(Pr[Gprf
F (D) : b′ = 1|b = 1, p = i]− Pr[Gprf

F (D) : b′ = 1|b = 0, p = i])

Title Suppressed Due to Excessive Length 25

Gprf
F (D) must ensure that all tokens for queried labels are constructed such that they can still access

encrypted values in EDS. Hence for x unique queries, after randomly initializing a token, it must
perform F.Ev. For the other m− x labels in M however, their “sub-tokens” (the keys to EDS) can
be generated either via random initialization or in a similiar fashion to queried labels. For these
m − x labels in M, Gprf

F (D) picks a value p ∈ {1, ..,m − x} to decide how many labels it will
randomly initialize or perform F.Ev.

Let us consider the case where p = i. On i labels, “sub-tokens” will be generated randomly using
{0, 1}lLen, while F.Ev will be performed on m− x− i− 1 labels. “Sub-tokens” will be generated
for the last label using F.Ev when b = 1, and randomly when b = 0. Thus notice that when b = 1,
F.Ev is run m− i times (including queried labels) and randomly initialization for “sub-tokens” is
performed for i labels. When b = 0, this is m− x− i− 1 and i+ 1 respectively.
Now, consider out hybrids H0 to Hm−x. Notice that in H0, since counter is always > 0, all labels
are generated using F.Ev. Conversely, in Hm−x, counter is always ≤ (m− x), thus all unqueried
labels are generated randomly. Following this logic, deduce that for any hybrid Hn, n unqueried
labels are generated randomly.

To link our hybrids to various versions of Gprf
F (D) when different values of p are chosen, we

will consider the number of unqueried labels that are generated randomly. Recall that this can be
expressed as p when b = 0 and p+ 1 when b = 1. Thus, it can be observed that

Pr[Gprf
F (D) : b′ = 1|b = 1, p = i] = Pr[Hi−1]

Pr[Gprf
F (D) : b′ = 1|b = 0, p = i] = Pr[Hi]

Consider again H0 and Hm−x. Notice that these extreme cases are equivalent to G3 and G4 respec-
tively.
Hence,

Pr[H0] = Pr[G3]

Pr[Hm−x] = Pr[G4]

Now, compare hybrids G0 and G4. Notice that G4 finds the volume voli of each label li, corre-
sponding to the number of values stored under each label. It then randomly generates tokens tk,
hashes them with their respective value and assigns a randomly generates encrypted document.
Functionally, G0 does the same thing by running the same algorithm for all (v1, ..., va) under each
label l. Next, observe that G4 ensures that EDS satisfies the equality pattern epi, which ensures that
a repeated label queried will return the same token. Functionally, G0 does this by checking for all
i = 1...n where li = l, and assigning the same value of tk. Thus, we conclude that G4 and G0 are
functionally equivalent.
Hence,

Pr[G4] = Pr[G0]

26 Richard Ong Jun Quan, Guan Keer, Claire-Leia Ng Shean Ee, Ruth Ng Ii-Yung, and John Khoo Teng Fong

Hence,

(m− x) · AdvprfF (D) =
m−x∑
i=1

(Pr[Gprf
F (D) : b′ = 1|b = 1, p = i]− Pr[Gprf

F (D) : b′ = 1|b = 0, p = i])

=
m−x∑
i=1

(Pr[Hi−1]− Pr[Hi])

= Pr[H0]− Pr[H1] + Pr[H1]− Pr[H2]...+ Pr[Hm−x−1]− Pr[Hm−x]

= Pr[H0]− Pr[Hm−x]

= Pr[G3]− Pr[G4]

= Pr[G3]− Pr[G0]

Having shown equations (1), (2), (3) and (4), we thus conclude our proof of the theorem.

	NOVEL PROOFS AND ALGORITHMS FOR RANGE SEARCHABLE ENCRYPTION

